Farley, K. A. et al. Mars 2020 mission overview. Space Sci. Rev. (2020).
Farley, K. A. et al. Aqueously altered igneous rocks sampled on the floor of Jezero Crater, Mars. Science 377, eabo2196 (2022).
Google Scholar
Simon, J. I. et al. Samples collected from the floor of Jezero Crater with the Mars 2020 Perseverance rover. J. Geophys. Res. Planets (2023).
Mangold, N. et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero Crater, Mars. Science 374, 711–717 (2021).
Google Scholar
Stack, K. M. et al. Sedimentology and stratigraphy of the Shenandoah Formation, Western Fan, Jezero Crater, Mars. J. Geophys. Res. Planets (2024).
Bosak, T. et al. Astrobiological potential of rocks acquired by the Perseverance rover at a sedimentary fan front in Jezero Crater, Mars. AGU Adv. (2024).
Horgan, B. H. N., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero Crater: evidence for possible lacustrine carbonates on Mars. Icarus (2020).
Goudge, T. A., Mustard, J. F., Head, J. W., Fassett, C. I. & Wiseman, S. M. Assessing the mineralogy of the watershed and fan deposits of the Jezero Crater paleolake system, Mars. J. Geophys. Res. Planets 120, 775–808 (2015).
Google Scholar
Steele, A. et al. Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard. Meteorit. Planet. Sci. 42, 1549–1566 (2007).
Google Scholar
Steele, A. et al. Macromolecular carbon in Martian basalts. Meteorit. Planet. Sci. 47, A357–A357 (2012).
Bhartia, R. et al. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation. Space Sci. Rev. 217, 58 (2021).
Google Scholar
Scheller, E. L. et al. Inorganic interpretation of luminescent materials encountered by the Perseverance rover on Mars. Sci. Adv. 10, eadm8241 (2024).
Google Scholar
Jones, M. W. M. et al. In situ crystallographic mapping constrains sulfate precipitation and timing in Jezero Crater, Mars. Sci. Adv. 11, eadt3048 (2025).
Google Scholar
Orenstein, B. J. et al. In-situ mapping of monocrystalline regions on Mars. Icarus 420, 116202 (2024).
Google Scholar
Tice, M. M. et al. Alteration history of Seitah Formation rocks inferred by PIXL X-ray fluorescence, X-ray diffraction, and multispectral imaging on Mars. Sci. Adv. 8, eabp9084 (2022).
Google Scholar
Vaniman, D. T. et al. Gypsum, bassanite, and anhydrite at Gale Crater, Mars. Am. Mineral. 103, 1011–1020 (2018).
Google Scholar
Hardie, L. A. Gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Mineral. 52, 171–17 (1967).
Google Scholar
Babechuk, M. G., Widdowson, M. & Kamber, B. S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 363, 56–75 (2014).
Google Scholar
Burns, R. G. & Fisher, D. S. Iron–sulfur mineralogy of Mars—magmatic evolution and chemical-weathering products. J. Geophys. Res. Solid Earth 95, 14415–14421 (1990).
Google Scholar
Henneke, J. et al. A radiometric correction method and performance characteristics for PIXL’s multispectral analysis using LEDs. Space Sci. Rev. (2023).
Rampe, E. B., Morris, R. V., Archer, P. D., Agresti, D. G. & Ming, D. W. Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observations. Am. Mineral. 101, 678–689 (2016).
Google Scholar
Roncal-Herrero, T., Rodríguez-Blanco, J. D., Benning, L. G. & Oelkers, E. H. Precipitation of iron and aluminum phosphates directly from aqueous solution as a function of temperature from 50 to 200 °C. Crys. Growth Des. 9, 5197–5205 (2009).
Google Scholar
Nriagu, J. & Dell, C. Diagenetic formation of iron phosphates in recent lake sediments. Am. Mineral. 59, 934–946 (1974).
Google Scholar
Treiman, A. H. et al. Manganese–iron phosphate nodules at the Groken Site, Gale Crater, Mars. Minerals (2023).
Hausrath, E. M. et al. Phosphates on Mars and their importance as igneous, aqueous, and astrobiological indicators. Minerals (2024).
Kizovski, T. et al. Fe-phosphates in Jezero Crater as evidence for an ancient habitable environment on Mars. Nat. Commun. 16, 6470 (2025).
Miller, W. P., Zelazny, L. W. & Martens, D. C. Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma 37, 1–13 (1986).
Google Scholar
Torres, R., Blesa, M. A. & Matijević, E. Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids. J. Colloid Interface Sci. 134, 475–485 (1990).
Google Scholar
Ionescu, D., Heim, C., Polerecky, L., Thiel, V. & De Beer, D. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions. Geomicrobiol. J. 32, 221–230 (2015).
Google Scholar
Eigenbrode, J. L. et al. Organic matter preserved in 3-billion-year-old mudstones at Gale Crater, Mars. Science 360, 1096–1101 (2018).
Google Scholar
Steele, A. et al. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 375, 172–177 (2022).
Google Scholar
Flynn, G. J., Nittler, L. R. & Engrand, C. Composition of cosmic dust: sources and implications for the early Solar System. Elements 12, 177–183 (2016).
Google Scholar
Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880 (2003).
Google Scholar
Afonso, M. D. & Stumm, W. Reductive dissolution of iron(III) (hydr)oxides by hydrogen-sulfide. Langmuir 8, 1671–1675 (1992).
Google Scholar
Canfield, D. E., Raiswell, R. & Bottrell, S. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659–683 (1992).
Google Scholar
Gaillard, F. & Scaillet, B. The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009).
Google Scholar
Machel, H. G. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment. Geol. 140, 143–175 (2001).
Google Scholar
Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).
Google Scholar
McSween, H. Y. Jr., Labotka, T. C. & Viviano-Beck, C. E. Metamorphism in the Martian crust. Meteorit. Planet. Sci. 50, 590–603 (2015).
Google Scholar
Cosmidis, J. et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78–96 (2014).
Google Scholar
Vuillemin, A. et al. Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia. Biogeosciences 17, 1955–1973 (2020).
Google Scholar
Hsu, T. W., Jiang, W. T. & Wang, Y. S. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan. J. Asian Earth Sci. 89, 88–97 (2014).
Google Scholar
Liu, J. R. et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea. Biogeosciences 15, 6329–6348 (2018).
Google Scholar
Rickard, D., Roberts, A. P. & Navrotsky, A. Sedimentary greigite formation. Am. J. Sci. (2024).
Picard, A., Gartman, A., Clarke, D. R. & Girguis, P. R. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochim. Cosmochim. Acta 220, 367–384 (2018).
Google Scholar
Xu, Z. Y. et al. Sulfidation-reoxidation enhances heavy metal immobilization by vivianite. Water Res. 263, 122195 (2024).
Google Scholar
Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).
Google Scholar
Marin-Carbonne, J. et al. In situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): evidence for early microbial iron reduction. Geobiology 18, 306–325 (2020).
Google Scholar
Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447–465 (2001).
Google Scholar
Thomson, J., Higgs, N. C. & Colley, S. A geochemical investigation of reduction haloes developed under turbidites in brown clay. Mar. Geol. 89, 315–330 (1989).
Google Scholar
Spinks, S. C., Parnell, J. & Bowden, S. A. Reduction spots in the Mesoproterozoic age: implications for life in the early terrestrial record. Int. J. Astrobiol. 9, 209–216 (2010).
Google Scholar
Kawahara, H. et al. Bleached-spot formation in Fe-oxide-rich rock by inorganic process. Chem. Geol. 609, 121049 (2022).
Google Scholar
Des Marais, D. J. et al. The NASA astrobiology roadmap. Astrobiology 3, 219–235 (2003).
Google Scholar
Gillen, C., Jeancolas, C., McMahon, S. & Vickers, P. The call for a new definition of biosignature. Astrobiology 23, 1228–1237 (2023).
Google Scholar
Mustard, J. F. et al. Report of the Mars 2020 Science Definition Team (Mars Exploration Program Analysis Group, 2013).
Hamran, S.-E. et al. Radar Imager for Mars’ Subsurface Experiment—RIMFAX. Space Sci. Rev. 216, 128 (2020).
Google Scholar
Allwood, A. C. et al. PIXL: Planetary Instrument for X-ray Lithochemistry. Space Sci. Rev. 216, 134 (2020).
Google Scholar
Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 217, 47 (2021).
Google Scholar
Wiens, R. C. et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217, 4 (2021).
Google Scholar
Bell, J. F. et al. The Mars 2020 Perseverance rover Mast Camera Zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation. Space Sci. Rev. 217, 24 (2021).
Google Scholar
Moeller, R. C. et al. The Sampling and Caching Subsystem (SCS) for the scientific exploration of Jezero Crater by the Mars 2020 Perseverance rover. Space Sci. Rev. 217, 5 (2020).
Google Scholar
Sharma, S. et al. Diverse organic-mineral associations in Jezero Crater, Mars. Nature 619, 724–72 (2023).
Google Scholar
Osterhout, J. T., Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D. & Williford, K. H. Deep-UV Raman spectroscopy of carbonaceous Precambrian microfossils: insights into the search for past life on Mars. Astrobiology 22, 1239–1254 (2022).
Google Scholar
Jakubek, R. S. et al. Spectral Background Calibration of Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) spectrometer onboard the rover enables identification of a ubiquitous Martian spectral component. Appl. Spectrosc. (2024).
Heirwegh, C. M., Elam, W. T., O’Neil, L. P., Sinclair, K. P. & Das, A. The focused beam X-ray fluorescence elemental quantification software package PIQUANT. Spectrochim. Acta Part B 196, 106520 (2022).
Google Scholar
Schmidt, M. E. et al. Diverse and highly differentiated lava suite in Jezero Crater, Mars: constraints on intracrustal magmatism revealed by Mars 2020 PIXL. Sci. Adv. 11, eadr2613 (2025).
Google Scholar
Chadwick, O. A., Brimhall, G. H. & Hendricks, D. M. From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3, 369–390 (1990).
Google Scholar
Liu, Y. et al. An olivine cumulate outcrop on the floor of Jezero Crater, Mars. Science 377, 1513–151 (2022).
Google Scholar
Fisher, R. A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1914).
Wright, A. P., Nemere, P., Galvin, A., Chau, D. H. & Davidoff, S. Lessons from the development of an anomaly detection interface on the Mars Perseverance Rover using the ISHMAP framework. In Proc. 28th International Conference on Intelligent User Interfaces 91–105 (Association for Computing Machinery, 2023).
Schurman, D. et al. PIXELATE: novel visualization and computational methods for the analysis of astrobiological spectroscopy data. In AbSciCon 2019, 401-8 (American Geophysical Union, 2019).
Davidoff, S. et al. PIXLISE spectroscopy analysis software: released versions for published analyses. OSF (2024).